If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.905x^2+20=0
a = -4.905; b = 0; c = +20;
Δ = b2-4ac
Δ = 02-4·(-4.905)·20
Δ = 392.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{392.4}}{2*-4.905}=\frac{0-\sqrt{392.4}}{-9.81} =-\frac{\sqrt{}}{-9.81} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{392.4}}{2*-4.905}=\frac{0+\sqrt{392.4}}{-9.81} =\frac{\sqrt{}}{-9.81} $
| 5(a+3)+4(a+2)=6(2a+5)-5(3a+2) | | -1=5+n/6 | | x*x+10=59 | | 20=8×-14x | | 2(3x-1)=x-4(2-x) | | 9x+10-8=3x-2x | | 12x-42=2x-8 | | -x^2+2x-24=0 | | 5(w-4)-7w=32 | | 2a+3a=–4a | | 2y-29=78 | | 6(4s+12)=7(3s-14) | | 44-x=14 | | 3t-7t=36 | | 16t^2+15t+10=0 | | (10)x=4 | | -3x^2=-7x+9 | | (4)x=10 | | X-27=3x+3 | | 7p+4=6p+22 | | 9^(2y+3)=27^(y) | | -x+9=2x-9 | | 10+1.50x+.50=15 | | 9x-6=4×+4 | | 6×-(2x+3)=1 | | 0=-30.6+0.7x-4.9X^2 | | 11.5x=34.5 | | -3r=51 | | -3.9-2x=1.3 | | 50x^2+39x+7=0 | | -4=0.33h-10 | | -3=-0.333h-10 |